• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Тема «центры превосходства»

Иллюстрация к новости: Нейросеть научили предсказывать кризисы на фондовом рынке России

Нейросеть научили предсказывать кризисы на фондовом рынке России

Экономисты из ВШЭ разработали нейросетевую модель, способную за сутки до события с точностью более 83% предупредить о приближении краткосрочного фондового кризиса. Модель работает даже на сложных, несбалансированных данных и учитывает не только экономические показатели, но и настроение инвесторов. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина опубликована в журнале Socio-Economic Planning Sciences.

Иллюстрация к новости: Первый цифровой тест для оценки навыков чтения у взрослых доступен на RuStore

Первый цифровой тест для оценки навыков чтения у взрослых доступен на RuStore

Центр языка и мозга НИУ ВШЭ разработал первый стандартизированный инструмент для оценки навыков чтения на русском языке у взрослых — тест «ЛексиМетр-В». Теперь он доступен в цифровом формате на платформе RuStore. Это приложение позволяет быстро и эффективно диагностировать нарушения чтения, включая дислексию, у людей в возрасте от 18 лет и старше.

Иллюстрация к новости: Сервисы должны быть гибкими: как использовать искусственный интеллект государству

Сервисы должны быть гибкими: как использовать искусственный интеллект государству

Международная лаборатория цифровой трансформации в государственном управлении НИУ ВШЭ провела круглый стол «Искусственный интеллект в государственном управлении: современные тенденции». Какие сервисы улучшит ИИ и что важно учитывать, применяя новые технологии, рассказали российские и зарубежные ученые.

Иллюстрация к новости: Искусственный интеллект помогает точнее прогнозировать риски сложных заболеваний

Искусственный интеллект помогает точнее прогнозировать риски сложных заболеваний

Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах). Результаты опубликованы в журнале Frontiers in Medicine.